
144 

 

 

ISSN: 3026-0442 

 

Proceedings of the 2nd International Conference on Education, Science 

Technology and Health (2nd I CONESTH 20 24 Bina Bangsa Getsempena 

University , Sept 10-12, 2 0 24, Banda Aceh, Indonesia 

 

 

Impact of Hyperparameter Optimizer for Image Malware 

Detection 

 

Iik Muhammad Malik Matin1 , Ayu Rosyida Zain1 , Aaz Muhammad 

Hafidz Azis2 

 

1 State Polytechnic of Jakarta, Indonesia 
2 Telkom University, Indonesia 

* Corresponding email: iik.muhamad.malik.matin@tik.pnj.ac.id 

 

 

ABSTRACT 

 

Image-based malware detection has become an area of further research in 

dealing with image-based malware attacks. Various deep learning models have 

been used to improve detection accuracy. One popular architecture is VGG16, 

a convolutional network widely used in image classification. In this study, we 

explore the impact of hyperparameter tuning on the optimization of the VGG16 

model for image-based malware detection. The hyperparameter experiments 

conducted in this study are optimizer, and the number of epochs. Through 6 

experiments with parameter variations, we evaluate the performance of the 

VGG16 model using several SGD, and Adam optimizers and the number of 

epochs consisting of 100, 250 and 500 epochs. The experimental results show 

that the selection and tuning of the optimizer can affect the performance of the 

model in terms of accuracy and training efficiency. The optimized Adam 

optimizer gives the best results, with higher detection accuracy than the SGD 

optimizer. The results show that the Adam optimizer has the highest accuracy 

reaching 85%. 
 

Keywords: VGG16, Adam, SGD, Optimizer. 

 

 

INTRODUCTION 

 

In recent years, cybersecurity threats have increased rapidly. One of the 

most common attacks is malware. Malware can cause significant losses to 

individuals and organizations, including data theft, system failures, and service 

disruptions. (Rathore et al., 2018) . Therefore, developing effective methods to 
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detect and prevent malware is very important. Machine learning-based malware 

detection has shown more effective results compared to other methods (Firdausi 

et al., 2010) . especially with the use of image processing techniques to analyze 

suspicious files and identify behavioral patterns. 

One of the important aspects in developing a machine learning model is 

hyperparameters. Hyperparameters are parameters that are set before the model 

training process and can affect the model's performance. In image-based 

malware detection, selecting the right optimizer and tuning hyperparameters 

can improve the accuracy and efficiency of detection. Various optimizers, such 

as Adam, and SGD have different characteristics in the parameter update 

process that can affect the final result of malware detection. 

Currently, research related to image-based malware detection in machine 

learning has been widely conducted, but studies on image-based malware 

detection are still limited. Previous studies have been conducted including 

Image-based malware detection systems can use Convolutional Neural 

Network (CNN) based model algorithms (Gibert et al., 2018) . Several studies 

have been conducted by Gibert (Gibert et al., 2018) using the Convolutional 

Neural Network model with a bytes dataset. In the following year, research was 

conducted using the same model but using the gray bytes dataset (Gibert et al., 

2019) . Kalash et al. used CNN with 25 epochs (Kalash et al., 2018) . While 

(Le et al., 2018) used CNN with 100 epochs. Transfer learning has been used 

by Salas et al. (Salas et al., 2023) with achievements on the MobileNet 

architecture. 

Hyperparameter optimization can improve model performance including 

image recognition. Therefore, this paper aims to conduct hyperparameter 

optimizer experiments on model performance in detecting malware from file 

images. 

METHODS 

 

Data Collection 

 In this study, the dataset used is the Maldeb dataset. This dataset 

consists of 1905 samples divided into 2 labels, namely 1033 malware and 872 

benign. Maldeb is an image-based dataset that has been converted from binary 

samples to images as depicted in Figure 1. 

 

Figure 1. Extraction Method 
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Extracting binary samples into images produces malware and benign samples 

as shown in Figure 2. 

 
Figure 2. Image Malware Dataset (July & Ismail, 2024) 

Design 

The model architecture used in this study uses the VGG16 base model that has 

been pre-trained using the ImageNet dataset. This architecture is built on a 

series of convolutional layers with 3x3 kernels, which repeatedly capture local 

patterns from the input image. One of the reasons for choosing the VGG16 

architecture is the simplicity of its design which only uses 3x3 filters in each 

convolutional layer, with a 2x2 pooling layer to reduce spatial dimensions, 

without sacrificing classification accuracy. 

Input Layer 

The classification process starts from the input layer, which receives images in 

a 224x224x3 format, according to the VGG16 architecture standard. In 

detecting malware, the input data is an image representation generated from a 

malware file that is converted into a visual image. This visual representation 

allows the network to capture patterns that are difficult to capture by manual 

feature-based techniques. 

VGG16 as Feature Extractor 

The VGG16 model used in this architecture acts as the primary feature 

extractor. The convolution layers are responsible for capturing the important 

features of the input image through 13 consecutive convolution layers. Each 

convolution layer uses a 3x3 kernel, with increasing filter depths from 64, 128, 

256, to 512 in each block. After each convolution block, a 2x2 Max Pooling 

layer is used to reduce the spatial dimension, which helps in reducing the 

computational complexity while retaining the important features. 
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Flattening and Dense Layer 

After the output of the last layer of VGG16, which is a three-dimensional 

tensor, this layer is then flattened into a one-dimensional vector. This process 

is necessary so that the data can be passed to the following Dense layer. The 

Dense layer added to this architecture consists of 512 neurons and uses the 

ReLU activation function. This layer is responsible for capturing the non-linear 

relationship between the features extracted by VGG16 and the malware class 

label. 

Dropout for Regularization 

We add a Dropout layer after the Dense layer. This Dropout layer sets the 

dropout rate to 0.5, which means that half of the neurons in this layer will be 

randomly deactivated on each training iteration. This way, the model does not 

rely too much on a small number of neurons, but instead learns to distribute 

learning across the network. 

Output Layer and Softmax Function 

The output layer is used to perform classification into malware classes. This 

layer consists of a number of neurons equal to the number of malware 

categories in the dataset, and uses the Softmax activation function. The Softmax 

function converts the output scores into probabilities that represent the 

likelihood that a particular input belongs to each malware class. . 

Optimizer and Training Process 

For the training process, we use the Stochastic Gradient Descent (SGD) 

optimizer with a learning rate of 0.01 and a momentum of 0.9. SGD was chosen 

to provide more stable and directional weight updates compared to Adam, 

especially on relatively large and complex datasets. The use of momentum 

helps accelerates convergence by preserving the direction of weight updates, 

thereby avoiding excessive oscillations along steep slopes. 

Measurement Method 

Maldeb Dataset has 2 types of classification, namely benign and malware, so 

that there can be four possible classification outputs as shown in Figure 1. 

 

Figure 3. Confusion Matrix 

 

There are 4 possibilities shown in Fig. 3 can be explained as follows: 
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a. True Negative ( TN ) 

True negative measurement results indicate the number of benign tumors 

that can be correctly identified. 

b. False Negative ( FN ) 

false negative measurement results show that the classification results are 

benign, even though what was identified was malware . 

c. True Positive ( TP ) 

True positive measurement results show the number of malware that was 

correctly identified. 

d. False Positive (FP) 

false positive measurement results indicate malware when in fact what is 

identified is benign. The four possible classification outputs are used to measure 

the model performance consisting of accuracy, precision, TPR ( Recall ) and 

F1- score with the following formula: 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (1) 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (2) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (3) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒−= 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅
    (4) 

 

Accuracy (1) is the ratio of correctly identified malware. Precision (2) is the 

relevance in identifying malware from the clarification results given by the 

output . True Positive Rate (TPR) or recall (3) is the ratio of the success rate in 

identifying malware . F-score (4) is the accuracy rate calculated based on the 

precision and recall of a test. 
  

RESULTS AND DISCUSSION 

 

 This experiment was conducted using the VGG16 model with variations of 

epochs (100, 250, 500) and optimizers (Adam, SGD) to detect malware. The 

results are shown in table 1. 

 
Table 1. Experiment Result 

Optimizer Epoch Precision Recall F1-Score Accuracy 

Adam 100 93 76 84 85 

Adam 250 92 76 84 84 

Adam 500 94 76 84 86 

SGD 100 94 71 81 82 

SGD 250 88 67 76 78 

SGD 500 88 67 77 79 

 

Adam Optimizer 

The model trained with Adam showed consistent results and tended to be better 

than SGD across a range of epochs. At 100 epochs, the model with Adam 
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optimizer produced a precision of 93%, a recall of 76%, an F1-score of 84%, 

and an accuracy of 85%. This shows that the model is quite good at detecting 

malware accurately with few false positives or false negatives. 

At 250 epochs, precision drops slightly to 92%, but recall remains stable at 

76%. This results in a stable F1-score of 84 and a slight decrease in accuracy to 

84%. This slight decrease is likely due to slight overfitting after a higher 

number of epochs. 

At 500 epochs, precision has increased again to 94%, with recall remaining at 

76%. However, the F1-score remains at 84, and accuracy has increased slightly 

to 86%. Adam seems to be quite stable in maintaining good performance even 

over longer training periods. 

  

SGD Optimizer 

The model trained using the SGD optimizer showed more varied results with 

performance that tended to be lower than Adam, especially in terms of recall. 

At 100 epochs, the model trained with SGD showed the same precision as 

Adam, which was 94%, but the recall was lower at 71%. This indicates that 

although the model was quite good at identifying detected malware, there were 

many cases of malware that were not detected (many false negatives). As a 

result, the F1-score dropped to 81, with an accuracy of 82%. 

At 250 epochs, the model performance with SGD began to decline. Precision 

dropped to 88%, while recall remained low at 67%. The F1-score also dropped 

to 76, and accuracy only reached 78%. This decline may be due to SGD's 

inability to optimize the model more effectively as the number of epochs 

increases. 

At 500 epochs, the downward trend continues. Precision remains at 88%, and 

recall does not improve, remaining at 67%. The F1-score and accuracy are at 

77 and 79%, respectively, indicating that even though the model has been 

trained longer, its performance has not improved significantly and tends to be 

worse than Adam. 

From these results, it is clear that the Adam optimizer is superior to SGD in 

terms of overall performance. Adam is able to maintain stable performance 

even when the number of epochs increases, while SGD tends to decrease in 

performance as the number of epochs increases. This may be due to Adam's 

adaptive ability to adjust the learning rate based on the gradient, allowing it to 

achieve faster and more stable convergence. 

In contrast, SGD is more sensitive to the number of epochs and tends to get 

stuck in local minima or have difficulty optimizing the model properly. 

Although SGD has high precision values at the beginning of training, low recall 

indicates that the model often fails to detect malware, which in real-world 

scenarios can be fatal. 

The low recall performance of SGD is a serious concern in malware detection 

applications. In security cases, errors in detecting malware (i.e., false negatives) 

are more harmful than false positives. Therefore, optimization with Adam is 
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more recommended for these malware detection tasks because it offers a better 

balance between precision and recall. 
 

 

CONCLUSION 

 

Based on the results of this experiment, it can be concluded that the Adam 

optimizer provides more stable and better performance compared to SGD in 

detecting malware using the VGG16-based transfer learning model. With 

higher precision, recall, F1-score, and accuracy, Adam is able to handle the 

overfitting problem better and offers better generalization to the validation data. 

In contrast, SGD shows less than optimal performance, especially in terms of 

recall, indicating that the model often fails to detect malware well. In malware 

detection, the use of the Adam optimizer is more recommended because of its 

ability to maximize detection and reduce false negatives .  
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