
144

ISSN: 3026-0442

Proceedings of the 2nd International Conference on Education, Science

Technology and Health (2nd I CONESTH 20 24 Bina Bangsa Getsempena

University , Sept 10-12, 2 0 24, Banda Aceh, Indonesia

Impact of Hyperparameter Optimizer for Image Malware

Detection

Iik Muhammad Malik Matin1 , Ayu Rosyida Zain1 , Aaz Muhammad

Hafidz Azis2

1 State Polytechnic of Jakarta, Indonesia
2 Telkom University, Indonesia

* Corresponding email: iik.muhamad.malik.matin@tik.pnj.ac.id

ABSTRACT

Image-based malware detection has become an area of further research in

dealing with image-based malware attacks. Various deep learning models have

been used to improve detection accuracy. One popular architecture is VGG16,

a convolutional network widely used in image classification. In this study, we

explore the impact of hyperparameter tuning on the optimization of the VGG16

model for image-based malware detection. The hyperparameter experiments

conducted in this study are optimizer, and the number of epochs. Through 6

experiments with parameter variations, we evaluate the performance of the

VGG16 model using several SGD, and Adam optimizers and the number of

epochs consisting of 100, 250 and 500 epochs. The experimental results show

that the selection and tuning of the optimizer can affect the performance of the

model in terms of accuracy and training efficiency. The optimized Adam

optimizer gives the best results, with higher detection accuracy than the SGD

optimizer. The results show that the Adam optimizer has the highest accuracy

reaching 85%.

Keywords: VGG16, Adam, SGD, Optimizer.

INTRODUCTION

In recent years, cybersecurity threats have increased rapidly. One of the

most common attacks is malware. Malware can cause significant losses to

individuals and organizations, including data theft, system failures, and service

disruptions. (Rathore et al., 2018) . Therefore, developing effective methods to

Title of Paper (Name Author One and Name Author Two)

145

detect and prevent malware is very important. Machine learning-based malware

detection has shown more effective results compared to other methods (Firdausi

et al., 2010) . especially with the use of image processing techniques to analyze

suspicious files and identify behavioral patterns.

One of the important aspects in developing a machine learning model is

hyperparameters. Hyperparameters are parameters that are set before the model

training process and can affect the model's performance. In image-based

malware detection, selecting the right optimizer and tuning hyperparameters

can improve the accuracy and efficiency of detection. Various optimizers, such

as Adam, and SGD have different characteristics in the parameter update

process that can affect the final result of malware detection.

Currently, research related to image-based malware detection in machine

learning has been widely conducted, but studies on image-based malware

detection are still limited. Previous studies have been conducted including

Image-based malware detection systems can use Convolutional Neural

Network (CNN) based model algorithms (Gibert et al., 2018) . Several studies

have been conducted by Gibert (Gibert et al., 2018) using the Convolutional

Neural Network model with a bytes dataset. In the following year, research was

conducted using the same model but using the gray bytes dataset (Gibert et al.,

2019) . Kalash et al. used CNN with 25 epochs (Kalash et al., 2018) . While

(Le et al., 2018) used CNN with 100 epochs. Transfer learning has been used

by Salas et al. (Salas et al., 2023) with achievements on the MobileNet

architecture.

Hyperparameter optimization can improve model performance including

image recognition. Therefore, this paper aims to conduct hyperparameter

optimizer experiments on model performance in detecting malware from file

images.

METHODS

Data Collection

 In this study, the dataset used is the Maldeb dataset. This dataset

consists of 1905 samples divided into 2 labels, namely 1033 malware and 872

benign. Maldeb is an image-based dataset that has been converted from binary

samples to images as depicted in Figure 1.

Figure 1. Extraction Method

Impact of Optimizer Hyperparameter Tuning for Image Malware Detection

146

Extracting binary samples into images produces malware and benign samples

as shown in Figure 2.

Figure 2. Image Malware Dataset (July & Ismail, 2024)

Design

The model architecture used in this study uses the VGG16 base model that has

been pre-trained using the ImageNet dataset. This architecture is built on a

series of convolutional layers with 3x3 kernels, which repeatedly capture local

patterns from the input image. One of the reasons for choosing the VGG16

architecture is the simplicity of its design which only uses 3x3 filters in each

convolutional layer, with a 2x2 pooling layer to reduce spatial dimensions,

without sacrificing classification accuracy.

Input Layer

The classification process starts from the input layer, which receives images in

a 224x224x3 format, according to the VGG16 architecture standard. In

detecting malware, the input data is an image representation generated from a

malware file that is converted into a visual image. This visual representation

allows the network to capture patterns that are difficult to capture by manual

feature-based techniques.

VGG16 as Feature Extractor

The VGG16 model used in this architecture acts as the primary feature

extractor. The convolution layers are responsible for capturing the important

features of the input image through 13 consecutive convolution layers. Each

convolution layer uses a 3x3 kernel, with increasing filter depths from 64, 128,

256, to 512 in each block. After each convolution block, a 2x2 Max Pooling

layer is used to reduce the spatial dimension, which helps in reducing the

computational complexity while retaining the important features.

Title of Paper (Name Author One and Name Author Two)

147

Flattening and Dense Layer

After the output of the last layer of VGG16, which is a three-dimensional

tensor, this layer is then flattened into a one-dimensional vector. This process

is necessary so that the data can be passed to the following Dense layer. The

Dense layer added to this architecture consists of 512 neurons and uses the

ReLU activation function. This layer is responsible for capturing the non-linear

relationship between the features extracted by VGG16 and the malware class

label.

Dropout for Regularization

We add a Dropout layer after the Dense layer. This Dropout layer sets the

dropout rate to 0.5, which means that half of the neurons in this layer will be

randomly deactivated on each training iteration. This way, the model does not

rely too much on a small number of neurons, but instead learns to distribute

learning across the network.

Output Layer and Softmax Function

The output layer is used to perform classification into malware classes. This

layer consists of a number of neurons equal to the number of malware

categories in the dataset, and uses the Softmax activation function. The Softmax

function converts the output scores into probabilities that represent the

likelihood that a particular input belongs to each malware class. .

Optimizer and Training Process

For the training process, we use the Stochastic Gradient Descent (SGD)

optimizer with a learning rate of 0.01 and a momentum of 0.9. SGD was chosen

to provide more stable and directional weight updates compared to Adam,

especially on relatively large and complex datasets. The use of momentum

helps accelerates convergence by preserving the direction of weight updates,

thereby avoiding excessive oscillations along steep slopes.

Measurement Method

Maldeb Dataset has 2 types of classification, namely benign and malware, so

that there can be four possible classification outputs as shown in Figure 1.

Figure 3. Confusion Matrix

There are 4 possibilities shown in Fig. 3 can be explained as follows:

Impact of Optimizer Hyperparameter Tuning for Image Malware Detection

148

a. True Negative (TN)

True negative measurement results indicate the number of benign tumors

that can be correctly identified.

b. False Negative (FN)

false negative measurement results show that the classification results are

benign, even though what was identified was malware .

c. True Positive (TP)

True positive measurement results show the number of malware that was

correctly identified.

d. False Positive (FP)

false positive measurement results indicate malware when in fact what is

identified is benign. The four possible classification outputs are used to measure

the model performance consisting of accuracy, precision, TPR (Recall) and

F1- score with the following formula:

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹 − 𝑆𝑐𝑜𝑟𝑒−= 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅
 (4)

Accuracy (1) is the ratio of correctly identified malware. Precision (2) is the

relevance in identifying malware from the clarification results given by the

output . True Positive Rate (TPR) or recall (3) is the ratio of the success rate in

identifying malware . F-score (4) is the accuracy rate calculated based on the

precision and recall of a test.

RESULTS AND DISCUSSION

 This experiment was conducted using the VGG16 model with variations of

epochs (100, 250, 500) and optimizers (Adam, SGD) to detect malware. The

results are shown in table 1.

Table 1. Experiment Result

Optimizer Epoch Precision Recall F1-Score Accuracy

Adam 100 93 76 84 85

Adam 250 92 76 84 84

Adam 500 94 76 84 86

SGD 100 94 71 81 82

SGD 250 88 67 76 78

SGD 500 88 67 77 79

Adam Optimizer

The model trained with Adam showed consistent results and tended to be better

than SGD across a range of epochs. At 100 epochs, the model with Adam

Title of Paper (Name Author One and Name Author Two)

149

optimizer produced a precision of 93%, a recall of 76%, an F1-score of 84%,

and an accuracy of 85%. This shows that the model is quite good at detecting

malware accurately with few false positives or false negatives.

At 250 epochs, precision drops slightly to 92%, but recall remains stable at

76%. This results in a stable F1-score of 84 and a slight decrease in accuracy to

84%. This slight decrease is likely due to slight overfitting after a higher

number of epochs.

At 500 epochs, precision has increased again to 94%, with recall remaining at

76%. However, the F1-score remains at 84, and accuracy has increased slightly

to 86%. Adam seems to be quite stable in maintaining good performance even

over longer training periods.

SGD Optimizer

The model trained using the SGD optimizer showed more varied results with

performance that tended to be lower than Adam, especially in terms of recall.

At 100 epochs, the model trained with SGD showed the same precision as

Adam, which was 94%, but the recall was lower at 71%. This indicates that

although the model was quite good at identifying detected malware, there were

many cases of malware that were not detected (many false negatives). As a

result, the F1-score dropped to 81, with an accuracy of 82%.

At 250 epochs, the model performance with SGD began to decline. Precision

dropped to 88%, while recall remained low at 67%. The F1-score also dropped

to 76, and accuracy only reached 78%. This decline may be due to SGD's

inability to optimize the model more effectively as the number of epochs

increases.

At 500 epochs, the downward trend continues. Precision remains at 88%, and

recall does not improve, remaining at 67%. The F1-score and accuracy are at

77 and 79%, respectively, indicating that even though the model has been

trained longer, its performance has not improved significantly and tends to be

worse than Adam.

From these results, it is clear that the Adam optimizer is superior to SGD in

terms of overall performance. Adam is able to maintain stable performance

even when the number of epochs increases, while SGD tends to decrease in

performance as the number of epochs increases. This may be due to Adam's

adaptive ability to adjust the learning rate based on the gradient, allowing it to

achieve faster and more stable convergence.

In contrast, SGD is more sensitive to the number of epochs and tends to get

stuck in local minima or have difficulty optimizing the model properly.

Although SGD has high precision values at the beginning of training, low recall

indicates that the model often fails to detect malware, which in real-world

scenarios can be fatal.

The low recall performance of SGD is a serious concern in malware detection

applications. In security cases, errors in detecting malware (i.e., false negatives)

are more harmful than false positives. Therefore, optimization with Adam is

Impact of Optimizer Hyperparameter Tuning for Image Malware Detection

150

more recommended for these malware detection tasks because it offers a better

balance between precision and recall.

CONCLUSION

Based on the results of this experiment, it can be concluded that the Adam

optimizer provides more stable and better performance compared to SGD in

detecting malware using the VGG16-based transfer learning model. With

higher precision, recall, F1-score, and accuracy, Adam is able to handle the

overfitting problem better and offers better generalization to the validation data.

In contrast, SGD shows less than optimal performance, especially in terms of

recall, indicating that the model often fails to detect malware well. In malware

detection, the use of the Adam optimizer is more recommended because of its

ability to maximize detection and reduce false negatives .

REFERENCES

Firdausi, I., Lim, C., Erwin, A., & Nugroho, AS (2010). Analysis of machine

learning techniques used in behavior-based malware detection.

Proceedings - 2010 2nd International Conference on Advances in

Computing, Control and Telecommunication Technologies, ACT 2010 ,

201–203. https://doi.org/10.1109/ACT.2010.33

Gibert, D., Mateu, C., Planes, J., & Vicens, R. (2018). Classification of malware

by using structural entropy on convolutional neural networks.

Proceedings of the 30th Innovative Applications of Artificial Intelligence

Conference, IAAI 2018 , 7759–7764.

https://doi.org/10.1609/aaai.v32i1.11409

Gibert, D., Mateu, C., Planes, J., & Vicens, R. (2019). Using convolutional

neural networks for classification of malware represented as images.

Journal of Computer Virology and Hacking Techniques , 15 (1), 15–28.

https://doi.org/10.1007/s11416-018-0323-0

July, S., & Ismail, I. (2024). MalSSL — Self-Supervised Learning for Accurate

and Label-Efficient Malware Classification. IEEE Access , 12 (March),

58823–58835. https://doi.org/10.1109/ACCESS.2024.3392251

Kalash, M., Rochan, M., Mohammed, N., Bruce, NDB, Wang, Y., & Iqbal, F.

(2018). Malware Classification with Deep Convolutional Neural

Networks. 2018 9th IFIP International Conference on New Technologies,

Mobility and Security, NTMS 2018 - Proceedings , 2018 - January , 1–5.

https://doi.org/10.1109/NTMS.2018.8328749

Le, Q., Boydell, O., Namee, B. Mac, & Scanlon, M. (2018). Deep learning at

the shallow end: Malware classification for non-domain experts.

Proceedings of the Digital Forensic Research Conference, DFRWS 2018

Title of Paper (Name Author One and Name Author Two)

151

USA , 26 , S118–S126. https://doi.org/10.1016/j.diin.2018.04.024

Rathore, H., Agarwal, S., Sahay, S. K., & Sewak, M. (2018). Malware detection

using machine learning and deep learning. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) , 11297 LNCS , 402–411.

https://doi.org/10.1007/978-3-030-04780-1_28

Salas, M.I.P., de Geus, P.L., & Botacin, M.F. (2023). Enhancing Malware

Family Classification in the Microsoft Challenge Dataset via Transfer

Learning. ACM International Conference Proceedings Series , 156–163.

https://doi.org/10.1145/3615366.3615374

